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Executive Summary

The Eastern Range installed a network of five 915 MHz Doppler Radar Wind Profilers (DRWP) with

Radio Acoustic Sounding Systems (RASS) in the Cape Canaveral Air Station / Kennedy Space Center

(CCAS/KSC) area to provide three-dimensional wind speed and direction and virtual temperature estimates

in the boundary layer. These profilers were installed to provide high spatial (100 m) and temporal (15

minutes) resolution wind data in the gap between the top of the CCAS/KSC wind tower network (150 m)
and the lowest gate (2 km) of the NASA 50 MHz DRWP. The Applied Meteorology Unit (AMU), staffed

by ENSCO, Inc., was tasked by the 45th Weather Squadron, the Spaceflight Meteorology Group, and the
National Weather Service in Melbourne, Florida to investigate methods which will help forecasters assess

profiler network data quality when developing forecasts and warnings for critical ground, launch and

landing operations.

Four routines were evaluated in this study: a consensus time period check, a precipitation

contamination check, a median filter, and the Weber-Wuertz (WW) algorithm. The consensus time period

check flags wind profiles that are created from data collection periods of less than six minutes. The

precipitation contamination check uses a relationship between vertical beam radial velocity and signal-to-
noise ratio to determine if a wind estimate is affected by rain, a known contaminant of 915 MHz profiler

data. The median filter compares the u- and v-components of a wind observation to the median of the

components of the surrounding wind observations. If the difference between an observed component and a
median component exceeds a certain threshold value, the observation is flagged. This median filter is not

related to the Median Filter/First Guess (MFFG) algorithm used on NASA's 50 MHz DRWP. Conclusions

about the MFFG performance cannot be made based on the performance of the median filter in this study.

WW is a pattern recognition program that is widely used in the profiler community. Wind observations that
do not fit into established patterns in the data set are flagged. No routine was able to effectively flag suspect

data when used by itself. Therefore, the routines were used in different combinations. An evaluation of all

possible combinations revealed two that provided the best results. The precipitation contamination and
consensus time routines were used in both combinations. The median filter or WW was used as the final

routine in the combinations to flag all other suspect data points.

The routines were tested in both post-analysis and simulated real-time mode. In post-analysis mode, the
data are assessed for quality after being collected and archived. This means that WW and the median filter

can evaluate continuity with wind estimates collected after the wind estimate being checked. In order to test

the routines in a real-time mode, they were modified to use only previously collected data in their continuity

checks. Archived data were then input to the routines for the simulated real-time tests. Profiler data for this

study were collected during the period 1 May through 31 August 1997. Five days with different weather
phenomena were chosen from this period for algorithm development and testing. The use of data collected
in diverse weather conditions allowed for a thorough analysis of how the routines would respond in

different weather regimes. The results from each routine were evaluated using color displays of wind speed

and direction and textual output.

An important conclusion of this study is that more than one quality assessment routine is needed to

accurately flag most of the erroneous data. Routines that check for temporal and spatial continuity work
well when the ratio of bad to good data is small. However, long-lived contaminants can cause a large

amount of erroneous data that will not be properly flagged by these algorithms. Because of the small data

set used in the analysis and the fact that the results from the median filter were only slightly better than WW
in the simulated real-time mode, neither routine is recommended over the other. It is critical, however, that

the consensus time and precipitation contamination checks be used to flag the obviously bad wind estimates
before using either of the dependent routines. Both of the combinations are able to identify most of the

unreliable data and little of the good data as suspect.
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1 Introduction

The purpose of this report is to document the findings of the Applied Meteorology Unit (AMU) task

regarding quality assessment of wind data from the 915 MHz Doppler Radar Wind Profiler (DRWP)
network on Cape Canaveral Air Station/Kennedy Space Center (CCAS/KSC). The AMU, staffed by

ENSCO, Inc., has been tasked by the 45th Weather Squadron (45 WS), the Spaceflight Meteorology Group

(SMG), and the National Weather Service in Melbourne, Florida (NWS MLB) to investigate methods

which will help forecasters assess profiler data quality when developing forecasts and warnings for critical

ground, launch and landing operations.

Section 1 of this report provides an overview of the radars in the network, a description of wind

profiling principles and the consensus averaging technique, and a discussion of the need for data quality
assessmem (QC). A summary of all the QC routines considered and their descriptions are given in Section

2, Section 3 shows the results of the analyses, and the conclusions are given in Section 4.

1.1 Prof'der Network Description

The Eastern Range procured and installed a network of five 915 MHz DRWP with Radio Acoustic

Sounding Systems (RASS) in the CCAS/KSC area (Heckman et al. 1996). This network can provide three-
dimensional wind direction and speed estimates in the boundary layer from 120 m to 4 km (400 to 13100 It)

AGL and virtual temperature (Tv) estimates from 120 m to 1.5 kin (400 to 5000 It) AGE These profilers

were installed to provide high spatial and temporal resolution wind data in the data gap between the top of
the KSC/CCAS wind tower network (150 m or 500 It) and the lowest gate (2 km or 6500 It) of the NASA

50 MHz DRWP.

The five profilers are arranged in a diamond-like pattern over the Cape area with an average spacing of

10-15 kin, as seen in Figure 1.1. The profilers have 4-panel phased-array antennas that are capable of

operating in a five-beam configuration: one vertical beam and four oblique beams at a 23.5 ° angle from the
zenith. All profilers currently use a three-beam configuration with one vertical and two oblique beams. The

three-beam configuration was chosen to produce the highest possible temporal resolution consensus data
without sacrificing accuracy in the three-dimensional wind calculations. The beam directions at each

individual site were chosen to minimize potential interference from ground clutter (trees, aircraft, traffic,

etc.). Table 1.1 shows the configuration of the oblique beam directions for each profiler. The beams

currently used are highlighted in bold type and denoted by an asterisk (*).



Figure1.1 Map of CCAS/KSC. The 915 MHz DRWP locations are indicated by a solid circle, and the
names of the locations are printed next to the sites. A scale is provided in the upper-fight.

Table 1.1 Oblique beam directions for each profiler. Beams in current

Radar

use are in bold type and indicated by a *.

TI-CO Airport

North East

*84 °

South

-174 °

*43 °

West

264 °South Cape 354 °

False Cape *2° 92 ° 182 ° *272°

Merria Island "17 ° 107 ° 197 ° *287°

Mosquito Lagoon 40 ° "130 ° *220 ° 310 °

,133 ° 223 ° 313 °



The currently available operational parameter settings for the wind measurements are def'med in

parameter sets given in Table 1.2 (Radian Corporation 1994). The set currently in use is Parameter Set 2.
The parameter set in use can be changed, but the individual settings within each set cannot be modified.

Preliminary studies have shown that the settings in Parameter Set 2 produce the greatest height range with

acceptable gate and time resolutions.

Table 1.2 The 915 MHz DRWP possible operational parameter

settings. The parameter set currently in use is

indicated by a **

Parameter

Beam width

Pulse width

Setl Set2** Set3

10 ° 10° 10 °

400m 700 ns 1400ns

Pulse repetition period 23 _ts 43 _ts J 41 las

Spectral points 64 64 64

# Coherent Avgs 350 188 200

# Spectral Avgs 42 42 42

Averaging time 10 min 10 rain 10 mm

Number of gates 30 32 22
r

The operational characteristics of the radars produced by Parameter Set 2 are shown in Table 1.3

(Radian Corporation 1994). For completeness, the characteristics produced by Parameter Sets 1 and 3 are

given in parentheses where they differ from those given by Set 2. The first gate and maximum heights

define the height range for each wind profile. The gate spacing indicates the height interval between wind
estimates in a profile. A 10-minute wind consensus period is followed by a 5-minute RASS consensus

period. Thus, wind and RASS consensus data are provided every 15 minutes. The Nyquist velocity is the
maximum unambiguous speed that can be detected along a beam toward or away from the radar. The value

of the Nyquist velocity is the same for each of the three parameter sets. Speeds in excess of this value will

change sign and decrease m magnitude. This is an effect known as velocity folding that will cause an
erroneous wind value to be calculated. For the 915 MHz DRWPs in the network, positive and negative

values represent wind components toward and away from the radar, respectively. Wind speed and direction

profiles are accurate to within 2 knots and 10 °.



Table1.3 The 915 MHz DRWP operationalperformance
characteristicsusingParameterSet2. Thecharacteristics
producedbySet1andSet3aregiveninparentheses(Set
1, Set 3) if they are different.

f
Parameter Characteristic

First gate height 383.4 ft (360.8ft, 1037.3ft)

Maximum height 10170.7 ft (5592.4fi, 14296. 7fi)

Gate spacing 315.7 ft (180.4ft, 631.4ft)

Time Resolution 15 rain

Nyquist velocity + 19.6 kts

Speed: < 2 kts
Accuracy Direction: < 10°

1.2 Principles of Wind Profding

DRWPs depend on the scattering of electromagnetic energy by variations in the index of refraction of
the air to ultimately resolve horizontal and vertical wind speed and direction (Peterson 1988). The index of

refraction of the air depends on temperature, pressure, and moisture. Spatial variations in the index are

caused by turbulent eddies which are created by horizontal or vertical wind shear. These variations are

advected by the wind and are used by DRWPs to determine the mean wind.

If a propagating electromagnetic wave encounters a spatial variation in the refractive index, a small
amount of energy is scattered in all directions. Some of the energy is backscattered to the radar where it can

be received and analyzed. Backscattering occurs preferentially from variations in the index of refraction
that are about half the size of the wavelength of the radar. With a wavelength of-33 era, this corresponds

to variations on the order of 16.5 cm for 915 MHz profilers. Such small variations occur mostly in the

lowest few kilometers of the atmosphere, which is the operating range for these radars.

If the returned energy, or signal, is very weak, the signal processing algorithms may not be able to

distinguish it from background noise in the atmosphere and an erroneous wind may be calculated. Certain
meteorological conditions have an effect on the returned signal strength. Index of refraction variations of

the appropriate size must exist for the energy to be scattered and returned to the radar. If the mean flow is
laminar, there will be little or no turbulence to produce the variations and any returned signal will be very

weak. The returned signal tends to be stronger when the atmosphere is moist or cloudy. Precipitation also

produces a strong signal, but this is a contaminant in 915 MHz profiler data which will be discussed later.

1.3 Wind Calculation

The raw radar waveforms along each individual beam are processed to yield the average Doppler

frequency shift at each range gate. The Doppler shifts are then converted into radial velocity estimates

along the radar beam. Detailed descriptions of the processes used are beyond the scope of this report, and
the interested reader is referred to Peterson (1988). The radial velocities are consensus-averaged over a 10-

minute period to remove outliers at each range gate. During this period, the radar produces 6 to 8 velocity

estimates for each gate of each beam. The exact number of estimates depends upon the radar beam dwell

time. The consensus average is calculated by averaging the values of the largest subset of radial velocity
estimates that fall within a defined interval of each other. For the profilers in the network, the velocity
estimates must be within 2 ms -l of each other to be used in the calculation of the consensus radial velocity.



Theconsensusradialvelocitiesarecombinedintohorizontalwindcomponentsusingthegeneral
equations(Peterson1988)

u= (Vl - wcos0)/sine 1.1

v= (V2- wcos0)/sine 1.2

w=V3 1.3

whereV1andV2aretheconsensusradialvelocitiesalongtheobliquebeams,V3is themeasuredradial
velocityalongtheverticalbeam,and0 isthezenithangle(23.5°).Duetotheobliquebeams'smallzenith
angle,asignificantportionoftheradialvelocitiesmeasuredalongthebeamscouldbeduetothevertical
velocity.The wcos0 term on the fight-hand side of equations 1.1 and 1.2 is the correction for the vertical

velocity in the oblique beam. At least 60% of the individual radial velocity estimates must make up the
subset used to calculate the consensus radial velocity. If this condition is not met, a consensus is not

reached at the range gate being considered. If a consensus is not reached at a range gate in one or both of

the oblique beams, a horizontal wind is not calculated. It is important to note that if a consensus is not
reached for the vertical velocity, the horizontal wind will be calculated without applying the vertical

velocity correction provided a consensus is reached in both oblique beams. The consensus averaging

constraint parameters are listed in Table 1.4.

Table 1.4 Consensus Constraints.

Parameter Constraint

Vertical Velocity Correction Yes*

Consensus Avg Window 2 ms -1 (4 kts)

% Required for Consensus 60%

Total # Samples in Period 6 - 8

* Applied when consensus vertical velocity is available.

The flow diagram in Figure 1.2 illustrates the process by which a horizontal wind is calculated from the

raw radar data at one gate along one beam, labeled Beam 1 in the diagram. In one beam sample, the raw

radar data are received, the Doppler shift is determined, and the radial velocity at the gate is calculated. In

this example, six sample beams are taken and a radial velocity is determined for each. Five of the six

samples are within 2 ms "1of each other. This meets the criterion that at least 60% of the samples be within
2 ms 1 of each other in order to calculate a horizontal wind. Estimate 1 in the figure is an outlier and

consequently not used in the consensus average. The remaining five values are averaged to produce a
consensus radial velocity of 6.2 ms -t for Beam 1 at that gate. It is important to note that an average radial

velocity for the vertical and oblique beams will still be calculated if less than 60% of the estimates are
within 2 ms -t of each other. If the 60% criterion is not met in one or both of the oblique beams, the

horizontal wind will not be calculated.

This process takes place concurrently in both oblique beams and the vertical beam during the 10-
minute consensus period. When the consensus radial velocities have been calculated at each gate for all

three beams, they are used in equations 1.1 - 1.3 to determine the horizontal winds.
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Figure 1.2 Flow diagram illuswating how a horizontal wind is derived from raw radar dam. This
represents the data flow for one gate along Oblique Beam 1. (Oblique Beam 2) and (Vertical
Beam) represent the same process to produce consensus radial velocities in the other two
beams. The dashed line from (Vertical Beam) indicates that input from this beam is not
needed to calculate a horizontal wind.

1.4 Need for Data Quality Assessment

There are several factors that have a negative effect on 915 MHz profiler data. Wind data can be
contaminated by reflections from nearby traffic, trees, ocean waves or sea spray, aircraft, birds, or
precipitation, and also by velocity folding. The consensus averaging technique is generally successful at
eliminating any short-lived contaminant that affects a gate or gates less than 40% of the time during the
consensus period. However, if a contaminant produces consistent values at least 60% of the time it will
likely be used in the wind calculation thereby producing an erroneous wind observation. There is currently
no quality assessment of the network data beyond the consensus constraints. Thus, the need exists to
develop quality assessment routines.

Each of the profilers is located in an area which is prone to certain long-lived data contaminants (refer
to Figure 1.1). The TI-CO profiler is located next to a small airport. Depending on the landing
configuration, heavy air traffic could contaminate the data. The False Cape profiler is located next to a road
that can have heavy automobile traffic in the mornings and afternoons. This traffic could create a return
signal from antenna sidelobes thereby contaminating the data. This profiler is also located on the coast.
However, there is a rise in the topography between it and the ocean so that sidelobe contamination from



ocean waves or spray is a rare occurrence. The other three profilers are located near areas of dense

vegetation and trees which can also cause sidelobe contamination.

All five profilers are prone to velocity folding, and bird and precipitation contamination. The nearby

wildlife refuge experiences large bird migrations in the spring and fall. Although data from the network has
not been examined with bird contamination in mind, this is a potential data contaminant. Precipitation is a

known contaminant of 915 MHz profiler data (Ralph 1995). The CCAS/KSC area receives close to 50" of

rainfall annually. There is a great deal of convective rainfall in the warm season and periods of extended
rainfall in the cool season. Because of this, precipitation is a very common contaminant of data in the

network.

The data from the network will be used by operational forecasters to support launch and landing

operations and general day-to-day ground operations. The acceptable wind speed and direction thresholds

for each of these operations are very specific. These data will also be used to develop methods for

forecasting thunderstorm initiation and other weather phenomena over CCASfKSC. In both of these cases,

it is important that the users know whether or not the data are reliable. The algorithms developed in this
task must be able to identify most, if not all, of the unreliable data and little, if any, of the good data as

suspect.

7



2 Quality Assessment Routines

Five QC algorithms were evaluated in this study and are described in this section. Each of the routines

were tested extensively using network data sets that were known to contain both good and contaminated
data. The routines were first tested individually to determine the appropriate threshold and parameter

settings and to rule out any routines that could not properly flag suspect data. The routines which produced
favorable individual results were then tested in several different combinations with each other. This

involved determining the best combinations, the appropriate order of the routines, and further modification

of their threshold and parameter settings.

These routines use the 10-minute consensus data to determine wind data reliability. Specifically, they

use the calculated horizontal winds, the consensus radial velocities, and the consensus signal-to-noise ratios

(SNR). It is a common practice to use individual beam data to QC profiler data. These data were not used
here because the individual beam data will no longer be transmitted from the profiler sites by the end of

1998. Any routine that uses these data would have to be modified extensively to use the consensus data or
not used at all. However, good results are obtained from using the consensus data as will be shown in

Section 3.

2.1 Routine Descriptions

This section provides descriptions of the five routines considered and analyzed in the task. Some were
found in the literature and others were developed based on characteristics seen in suspect data. The

routines were evaluated and revised using color graphical displays and textual output of the network data.

Wind speed and direction were displayed separately as color-fill time-height profiles over a 24-hour period.

These displays facilitated the detection of erroneous wind speed and direction changes. Once the times and

heights of suspect winds were determined, the data values in the textual output at those times and heights
were examined. The data values were used to help determine the appropriate threshold and parameter

settings in the QC routines.

The data were then QC'd with the new routines. The output from the routines was examined again

using the graphical and textual data to determine if the routines were able to flag the suspect data without
flagging the good data. If the results were not satisfactory, the thresholds and parameters were modified

and the process repeated.

2.1.1 Consensus Time

This algorithm is necessary because of a system check that will reset a profiler if its computer time is
more than 5 seconds off the time on the central computer located in the Range Operations Control Center

(ROCC). When a radar is reset during a consensus period all data collected up to the time of the reset is

erased. However, the profiler will continue to collect data through the end of the allotted period and
calculate a consensus wind. If the reset occurs toward the end of the period, a horizontal wind estimate is

calculated from data collected over a very short time as long as the consensus criteria are met. Analysis of

the data showed that wind profiles calculated from these shortened time periods were highly inconsistent in

time and space. This reset procedure rarely occurs, but because it does occur the time periods must be
checked. This is easily done as the number of minutes in the period are transmitted with the consensus data.

The consensus time algorithm is a very simple check that will flag a data point as suspect if its

consensus period is less than the threshold value of six minutes. This value was derived from the standard

consensus time period of ten minutes and the consensus constraint that 600 of the samples must be used to
calculate a horizontal wind, i.e. 60% often minutes is six minutes. This ensures that a sufficient number of

samples have been collected to produce a reliable wind estimate.

2.1.2 Precipitation Contamination

Obviously erroneous horizontal winds were frequently calculated during periods of observed rainfall

over CCAS/KSC. Large downward vertical velocities and high SNRs were regularly associated with these



winds.A reviewof the literature revealed several sources which confirm that rain does contaminate 915

MHz profiler data (Ralph 1995, Williams et al. 1995, and Ralph et al. 1996). Ralph (1995) concluded that

precipitation produces a relatively unambiguous signature in the radial vertical velocities. In addition, a
stronger return signal can be used as an additional signature to identify precipitation in the profiles. A

stronger return signal can be inferred from high SNR values. As rain occurs frequently in the CCAS/KSC
area, this is likely a significant cause of erroneous horizontal wind estimates.

In order to determine appropriate data value thresholds that would indicate rain in profiles, vertical

beam consensus radial velocities were plotted against vertical beam consensus SNRs for clear air data and
data known to be contaminated by rain. Approximately 15,000 points were used in the analysis. These

plots revealed two distinct populations separating clear-air and rain contaminated data points, as seen in

Figure 2.1. This allowed development of a discriminant function as found in Panofsky and Brier (1968).
This is a linear regression technique in which two or more predictors are used to determine a linear function
that will most successfully discriminate between two groups of events. The following equation is used to

distinguish between rain contaminated data points and clear-air data points:

L = -1.731 + 0.298(VV) + 0.014(SNR) 2.1

where W is the vertical velocity in knots and SN'R is in decibels (riB). If the result, L, is positive, the data

point is considered to be contaminated by rain and is flagged as suspect.

It is important when using this algorithm to ensure that at least 60% of the individual estimates are used
to calculate the consensus radial velocity and SNR in the vertical beam. Otherwise, the values of the

estimates may be unrepresentative of the current environment. If less than 60% of the estimates are used,

the vertical velocity will not be used in the calculation of the horizontal wind. Therefore, the vertical beam
data are checked for the number of samples used in their calculation before being used in the discriminant
function. If the number is less than 60% of the total number of estimates, it is not checked in the

discriimnant function and the horizontal wind estimate is not flagged.

In Figure 2.1 there are a few rain contaminated points located to the left of the discriminant function
line in the clear-air region. This is a result of the analysis technique in which all estimates in a profile were

assumed to be contaminated by rain if more than 75% of the vertical velocities were above 6 knots and
more than 75% of the SNRs were above 15 dB. This assumption caused estimates in those profiles to be

included in the rain contaminated data sets that did not meet the consensus constraints as well as those that

had values less than 10 knots and 20 dB. The inclusion of these points in the analysis may have created
inaccurate constant values in the function, but the results in Section 3 indicate that the equation works well

in its current form.
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Figure 2.1 Plot of consensus SNR (dB) versus consensus vertical velocity (knots) for known rain

contaminated and clear-air data on 17 June 1997 at the False Cape profiler. This data set

was used in the development of the discriminant function, which is represented by the thick
line. The lines at SNR=0 and VV=0 are drawn for reference.

2.1.3 Median Filter

The median filter described herein is not related in any form to the Median Filter/First Guess (MFFG)

algorithm (Wilfong 1993) which is used only on the NASA 50 MHz DRWP data. The MFFG is applied

to the individual beam spectral data as a temporal filter to remove outliers. The median filter in this study

uses equations that are adaptations of the routines developed in Carr et al (1995). It tests the temporal and

spatial consistency of the u- and v-components of the calculated horizontal wind in an attempt to identify

suspect data. The reader should not attempt to relate the performance of the MFFG to the performance of

the Weber-Wuertz (WW) algorithm based on the comparisons of the median filter algorithm and WW

algorithm contained within this report.

The algorithm compares the u- and v-components of a horizontal wind observation to the medians of

the u- and v-components of the surrounding (space and time) observations. If the difference between the

observed wind component, ui and/or v i, and the median of the neighboring observations, Um and/or vm,
exceeds a critical threshold, To and/or T,., then the wind observation, u_and vi, is flagged as suspect.

The critical threshold values, Tu and Tv, are computed as follows:
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where

InT2,

T u = max (Tub T2) and

Tv = max (Tvl, T2)

Tul = 0.2"l Um+ ui 1,

Tvl = 0.2"[ Vm+ vi l, and

T2 = a'( Ah2+ Bh + C ).

a = 1.3,

h = height of the wind observation (feet),

A = -5.695 X 10-9,

B = 3.66 X 10-4, and

C = 7.3834.

The following two sections describe how the median filter was applied in the post-analysis and
simulated real-time modes.

2.1.3.1 Post-Analysis Mode

The number ('N) of good wind observations (i.e., not missing or not previously flagged) in the eight

surrounding points in a 3X3 space and time grid box (representing 30 minutes and 200 m) is determined

(Figure 2.2) for the wind observation under evaluation. If N is greater than 3, then the medians of the u-

and v-components of the good wind observations are calculated and the median filter test (described above)

is performed.

_-30 min-_

Wind _ I
Observations

Wind Observation T
Under Evaluation -,.a

A A A A A

W W W W

Jght _
He"

Grid Boxes q_

T
200 m

Time _

Figure 2.2 Illustration of the method in which the median filter is operated in post-analysis mode. The

dots indicate the time-height wind observations and the center dot is the observation being

QC'd.
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IfN islessthan 3 for the inner 3X3 box, then the test grid box is enlarged to a 5X5 space and time grid

box (representing 1 hour and 400 m) and the same test procedure is invoked. If N is greater than 3 for the

24 surrounding points in the 5X5 grid box, then the medians of the u- and v-components of the good wind
observations are calculated and the median filter test is performed.

IfN is still less than 3 for the 5X5 grid box, then the test grid box is enlarged for the final time to a 7X7

space and time grid box (representing 1.5 hours and 600 m) and the same test procedure is invoked. IfN is

greater than 3 for the 48 surrounding points in the 7X7 grid box, then the medians of the u- and v-

components of the good wind observations are calculated and the median filter test is performed.

If N is less than 3 for the 7X7 grid box, then the median filter test is not applied and the wind

observation under evaluation is not flagged. This process is repeated for all good wind observations in the
data set.

2.1.3.2 Real-Time Mode

In real-time mode the grid box used is not symmetrical because the wind observations used in the

algorithm must be from the current or previous time periods. Future data are not available as they are in

post-analysis mode. The number of good wind observations in the five surrounding points in a 3322 space
and time grid box (representing 15 minutes and 200 m) is determined (Figure 2.3) for the wind observation

under evaluation. If N is greater than 3, then the medians of the u- and v-components of the good wind
observations are calculated and the median filter test (described above) is performed.

Figure 2.3

Wind

Observations

Wind Observation

Under

Height

Grid Boxes

15 rain

T
200 m

Time _

Illustration of the method in which the median filter is operated in real-time mode. The dots

indicate the time-height wind observations and the dot at fight-center is the observation being

QC'd.

IfN is less than 3 for the inner 3X2 box, then the test grid box is enlarged to a 5X3 space and time grid

box (representing 30 minutes and 400 m) and the same test procedure is invoked. If N is greater than 3 for
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the14surroundingpointsin the5X3gridbox,thenthemediansof theu-andv-componentsof thegood
windobservationsarecalculatedandthemedianfiltertestisperformed.

If N isstilllessthan3 forthe5X3gridbox,thentestgridboxisenlargedforthefinaltimetoa7X4
spaceandtimegridbox(representing45minutesand 600 m) and the same test procedure is invoked. If N

is greater than 3 for the 27 surrounding grid points in the 7X4 grid box, then the medians of the u- and v-
components of the good wind observations are calculated and the median filter test is performed.

If N is less than 3 for the 7X4 grid box, then the median filter test is not applied and the wind

observation under evaluation is not flagged. This process is repeated for all good wind observations in the

data set.

2.1.4 Weber-Wuertz

The Weber-Wuertz QC algorithm (WW) is widely used and well known within the profiler community.

It is currently being used to QC real-time data from the NOAA Profiler Network (NPN) (Barth et al. 1997).

It therefore has potential to be an appropriate QC algorithm for the 915 MHz DRWP network data. This

algorithm uses pattern recognition techniques that identify winds which do not satisfy mathematical

definitions of temporal and spatial continuity (Weber and Wuertz 1991).

WW is a mathematically complex routine that recognizes patterns in one- or two-dimensional arrays of

any desired data type. In this study, it is used to recognize data patterns in time and space of the consensus
radial velocities in each of the three beams. All data in an individual beam data set are input at the

beginning of the routine. A set of six subroutines are then used to establish neighbors, branches, and
patterns of connected branches in the data set. Neighboring points with similar values are placed in the

same branch of a pattern. Neighboring points with large differences in their values are placed m a different
branch in the same pattern or in a branch in a completely different pattern. After the patterns are

established, four quality control routines are used to flag branches and patterns that are clearly inconsistent

with the majority of the data and patterns that contain a very small number of data points.

Patterns are established and QC'd separately in each of the three beams' consensus radial velocity data.

If a radial velocity estimate in any of the beams is flagged then the corresponding calculated horizontal
wind is flagged, with one exception: if a flagged vertical velocity estimate is not used in the calculation of

the horizontal wind, then that wind is not flagged provided that neither of the corresponding radial velocity

estimates in the two oblique beams are flagged.

Certain parameters must be set that dictate how WW will establish and QC the patterns. Several

iterations of tests using several data sets were performed to determine the appropriate settings. The

parameters and their settings are shown in Table 2.1.

Table 2.1 Weber-Wuertz Algorithm Parameter Settings.

Parameter

dx: time

space (along radial)

Value

30 minutes (2 time periods)

631.4 feet (194 m or 2 gates)

dy: oblique beams 4 knots
vertical beam 2 knots

nmin 32 data points

WW defines dx as the neighborhood size in both time and space and dy as the acceptable change in

wind speed over the neighborhood size. In other words, dy/dx can be viewed as the maximum allowable
derivative for continuous data within a pattern. Because large changes in wind speed and direction in time

and space can actually occur in the boundary layer, relatively small intervals were chosen for the time and
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spaceneighborhoodsizes.Smallervaluesarelessrestrictiveandallowlargerchanges over larger intervals.

There are separate values of change in wind speed for the vertical and oblique beams. Vertical wind speeds
tend to be very small (< 1 knot) and the temporal and spatial changes tend to be very small as well. The

oblique radial velocities contain a component of the horizontal wind and tend to be much stronger than the

vertical velocities with larger changes in magnitude. Thus, dy is smaller for the vertical beam than for the

oblique beams. The minimum number of data points any pattern can have is defined by nmin. Patterns with
less than 32 data points are considered unreliable and are flagged as suspect by the algorithm.

The following two sections describe how WW was applied in the post-analysis and simulated real-time

modes.

2.1.4.1 Post-Analysis Mode

Although any time period can be used, in this study WW checks 24 hours of data at a time in post-

analysis mode. This was convenient because each file contains 24 hours of data, which equates to 3072

points (96 profiles X 32 gates). All the data are input to the routine, then the patterns are determined for the
whole period. Thus, data collected before and after the wind estimate in question are used to determine

whether or not the estimate fits into a pattern.

2.1.4.2 Real-Time Mode

When used in real-time, a QC routine will only check the data in the current profile for reliability. Any

QC algorithm that flags data based on continuity, such as WW, only has present and past data available to
it. Since it may be considered for use in real-time, the WW routine was modified to QC archived data in a
real-time mode. Simulations using archived data sets will give an indication of the performance that can be

expected from using WW in real-time.

The technique used in this study is similar to that used in Barth et al. (1997). It uses a sliding time
window to establish patterns, then checks all data points in the time window but only retains the results for

the current profile. WW must establish new patterns when a new profile is introduced and uses a sliding

window in order to use a consistent time period over which patterns are established. The QC information

from the previous profiles is retained when establishing new patterns, i.e. wind estimates previously flagged

by WW and any other routine within the current time window are not used to quality control the current

profile. The time period chosen must be large enough for the algorithm to establish legitimate patterns, yet
be small enough to allow the algorithm enough time to process the data before the next profile arrives and
so that the current profile is displayed in a timely manner. After several tests a time period of 6 hours, or 25

profiles, was chosen.
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Time

Figure 2.4 Illustration of the method in which WW is operated in real-time mode. The dots indicate the

time-height data points, the four brackets below the grid labeled Step n, Step n+ 1, and so on

represent the sliding time window, and the arrows on the right hand side of the brackets point

to the current profile being QC'd.

In Figure 2.4 a grid of dots representing a portion of the data in each of the profiles over 28 time

periods is shown. The first bracket, labeled Step n, encompasses the 25 profiles used in WW to establish

data patterns. These patterns are used to QC the current profile, which is indicated by the arrow on the

right-hand side of the bracket. Suspect data are flagged in this profile alone dtlring this step. When a new

profile is produced, the window slides to the right, as shown by the bracket labeled Step n+l, and new

patterns are established in WW as the process is repeated.

2.1.5 SNR Threshold

This routine was considered because low SNR values can indicate a weak returned signal, strong

background noise, or combination of both such that the calculated horizontal wind may be regarded as
suspect. SNR threshold algorithms have been used in other studies (Merceret 1997) to effectively QC

profiler data. The routine developed for this study flagged data that had consensus SNR values below a
threshold value of-15 dB. A wind value was flagged as suspect if the consensus SNR in one or both of the

oblique beams was below the threshold. The data point was also flagged if the vertical velocity was used in
the calculation of the horizontal wind and its SNR was below the threshold.

This routine was eliminated from the analysis in the early stages of the study. It was ineffective at

flagging suspect data and tended to flag winds that were consistent in time and space with surrounding wind
values. Tests were conducted in which the threshold value of- 15 dB was lowered to -20 dB in increments

of 1 dB with the same results. It appears that a low consensus SNR value is not a reliable indicator of a

suspect consensus wind in this network_
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2.2 Effective Routine Combinations

No routine was able to effectively flag suspect data when used on its own. Combinations of the four

routines with favorable individual evaluations were examined, and two of those combinations were found

most effective:

Combination 1 (CPW)

Consensus Time

Precipitation Contamination
Weber-Wuertz

Combination 2 (CPM)

Consensus Time

Precipitation Contamination
Median Filter

The precipitation contamination and consensus time routines were used in both combinations. Both of
these routines were very effective at flagging data that met the specific criteria of each routine. They were

not able, however, to flag suspect data that had other sources of contamination. The median filter and WW

routines were used in the combinations to flag all other suspect wind estimates.

The algorithms must be used in a specific order. The consensus time period and rain contamination

checks do not depend on time or space continuity of the data, but only on the data values associated with the
wind estimate being checked. They are used to QC the data first to remove the obviously bad wind
estimates. This ensures that WW will not see the areas of bad data as legitimate patterns and that the

median filter will not use the bad values in the calculation of the median values. When run in the order

shown in the above lists, the algorithms do very well in flagging most of the bad data points while flagging

few good data points.
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3 Examination of the Results

As stated in the previous section, the routines were developed and evaluated by examining the output in

graphical and textual form. In this section the graphical output from the CPW and CPM combinations will
be examined. Due to extensive processing time and computer memory limits, and in the interest of brevity,

data from the False Cape profiler only are shown. There were many hardware problems with several of the

profilers in the 1997 warm season. The False Cape profiler is used because it operated relatively reliably

during this period and was the only profiler that was operating on all five days chosen for the evaluation.

3.1 Cases Used in the Analysis

Profiler data for this study were collected during the period 1 May through 31 August 1997. Five days

with different weather phenomena were chosen from this period for algorithm development and testing.

They are sttmmarized in Table 3.1. The use of data collected in diverse weather conditions allows for a

thorough analysis of how the routines respond in different weather regimes.

Table 3.1

Date

Summary of case days and their associated weather phenomena.

Meteorological Conditions

2 May 1997 Dry conditions, afternoon sea breeze

12 May 1997 Rain over network all day

15 May 1997 Nocturnal jet, afternoon sea breeze

18 May 1997 Convection near network, afternoon sea breeze

17 June 1997 Nocturnal jet, convection over network, afternoon sea breeze

The following paragraphs describe each of the case days in more detail. The color graphical images

used in the analysis (described in Section 2.1) are given with each description. The images contain the raw

wind speed and direction data before the QC routines were applied.

2 May 1997

2 May was characterized by very dry air above 6000 ft. As can be seen in the False Cape profiler data

in Figures 3.1 and 3.2, this resulted in a limited number of consensus winds above 6000 ft and also a small
number of consensus winds below 6000 ft until 1600 UTC. After that time the boundary layer became

more moist and likely more turbulent with the afternoon heating, thus creating conditions more conducive to

producing consensus winds. A sea breeze occurred although the wind speed (Figure 3.1) and direction

(Figure 3.2) changes associated with its passage were not abrupt. A gradual change in direction from

northerly to easterly in the lowest 2000 ft occurred during the period from 1200 UTC to 1700 UTC.
Subsequently, the flow gradually became southeasterly and remained that way through the end of the day.

Wind speeds in the sea breeze layer were less than 10 knots from 1200 to 1700 UTC, but eventually

increased to 15 knots by 2200 UTC. This day was chosen to evaluate the performance of WW and the

median filter in the presence of large amounts of missing data.
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Figure3.1
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Wind speeds from the False Cape profiler on 2 May 1997. Speeds are in knots (legend at

right). The warm colors represent winds greater than 20 knots and the cool colors represent

winds less than 20 knots. Areas of black indicate gates where a consensus wind was not
calculated.

Figure 3.2

9(_0-

8000-

7000-

6000-

Height

(feet) 5O00-

4000-

3000-

2000-

360

330

3O0

270

240

210

180

150

120

90

60

30

0

1000-

012345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (UTC)

Wind directions from the False Cape profiler on 2 May 1997. Directions are in degrees

(legend at right). The warm colors represent winds with a westerly component and the cool

colors represent winds with an easterly component. Areas of black indicate gates where a
consensus wind was not calculated.
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12May1997

Rain was observed over CCAS/KSC from 0830 UTC to approximately 2300 UTC on 12 May. Every

profiler in the network was affected by this rain over the entire period. The actual wind speeds (Figure
3.3) and directions (Figure 3.4) were difficult to resolve due to the rain contamination of the data. This

contamination can be seen in the False Cape profiler data mainly as temporally inconsistent wind speeds

and directions from profile to profile. This day was chosen primarily to evaluate the performance of the

rain contamination check. This check, which is used first, would likely flag a large amount of data as
bad. The flagged data would be seen as missing by WW and the median filter, which are used last.

Therefore, this also provides an evaluation of WW and the median filter in the presence of large amounts
of missing data.
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Wind speeds from the False Cape profiler on 12 May 1997. Speeds are in knots (legend at
right). Areas of black indicate gates where a consensus wind was not calculated.
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Wind directions from the False Cape profiler on 12 May 1997. Directions are in degrees

(legend at right). Areas of black indicate gates where a consensus wind was not calculated.

15 May 1997

15 May is also characterized by somewhat dry conditions with few consensus winds above 7000 ft and

limited consensus winds up to 1400 LrFC at all levels in the profiles. The other meteorological

phenomena that occurred on this day were an early morning southerly low-level jet and a sea breeze

passage, which can be seen in the False Cape profiler wind speed and direction data in Figures 3.5 and

3.6, respectively. The low-level jet was contained below 3000 ft and reached its peak speed of 25 knots

between 0300 and 0530 UTC (Figure 3.5). The sea breeze passage was indicated by a veering of the

winds below 2000 ft from northerly to easterly by 1530 UTC and continuing to southeasterly by the end of

the period (Figure 3.6). Speeds in the sea breeze at 1530 UTC were less than 10 knots, but gradually

increased to between 15 and 20 knots by 2200 UTC. This day was chosen to evaluate the performance of

WW and the median filter when there are changes in wind speed and direction, particularly at the sea

breeze front. If either of these algorithms flagged the sea breeze passage as suspect, it would be

considered unacceptable and the algorithm would be modified or eliminated from use.
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Wind speeds from the False Cape profiler on 15 May 1997. Speeds are in knots (legend at

right). Areas of black indicate gates where a consensus wind was not calculated.
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Wind directions from the False Cape profiler on 15 May 1997. Directions are in degrees

(legend at right). Areas of black indicate gates where a consensus wind was not calculated.
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18May1997

18 May was more moist than the previously discussed days. Convection occurred during the

afternoon west of CCAS/KSC, but none occurred over any of the profilers. As can be seen in Figures 3.7

and 3.8 the False Cape profiler was able to produce consensus winds most of the time at all levels up to

0600 UTC, but only limited consensus winds above approximately 8000 ft after 0600 UTC. The winds

were light and variable, but had an easterly and/or southerly component at most levels over the entire

period. This made it difficult to detect the sea breeze in the direction data (Figure 3.8), but it could be

seen in the speeds at the False Cape (Figure 3.7). The easterly winds began to increase below 3000 ft at

1430 UTC from less than 5 knots to 15 knots by 1700 UTC. The easterly winds continued increasing

below 4000 ft to a maximum of 20 knots by 2300 UTC. This day was chosen to evaluate the performance

of WW and the median filter in light and variable wind conditions and during the passage of a sea breeze.
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Wind speeds from the False Cape profiler on 18 May 1997. Speeds are in knots (legend at

right). Areas of black indicate gates where a consensus wind was not calculated.

22



11000

I

Figure 3.8

Height
(feet)

360

330

300

270

240

210

180

150

120

90

60

30

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (LTTC)

Wind directions from the False Cape profiler on 18 May 1997. Directions are in degrees

(legend at right). Areas of black indicate gates where a consensus wind was not calculated.

17 June 1997

Several interesting meteorological phenomena occurred on 17 June. The formation and decay of a

southerly low-level jet was observed during the early hours of the day, a sea breeze passed in the late

morning hours, and convection developed over the network through most of the afternoon and early

evening. Both file wind speeds (Figure 3.9) and directions (Figure 3.10) from the False Cape profiler

clearly illustrate these features.

The winds were generally westerly throughout the 24-hour period. The sea breeze from the previous

afternoon can be seen between 0000 and 0200 UTC as easterly winds (Figure 3.10) below 2000 fi that

were weakening (Figure 3.9) with time. The winds began to veer and become more southerly and the

speeds increased from 0200 to 0500 UTC. The jet had a maximum speed of over 20 knots from the south
between 0500 and 0700 UTC (0100-0300 EDT) and below 3000 ft. The winds veered and weakened until

they were westerly at 10 knots by 0900 UTC. This was also observed in the Merritt Island profiler data,

the only other profiler operating that day. The sea breeze passed abruptly at 1530 UTC as noted by a

change in wind direction below 2000 ft from westerly to easterly. The wind speeds were quite weak, but a

slight increase occurred just after the wind direction change. Convection over the False Cape profiler

began just after 1700 LrFC and continued through 2200 UTC. The rain contamination can be seen as

temporally inconsistent wind speeds and directions from profile to profile during this period.

This case was chosen for the evaluation to test the precipitation contamination check and to test WW

and the median filter in the presence of the wind shifts associated with the low-level jet and the sea

breeze. A large amount of data will be flagged by the precipitation contamination check which will be

seen as missing data by WW and the median filter. Thus, the effect of missing data on the performance of
WW and the median filter will also be tested.
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Wind speeds from the False Cape profiler on 17 June 1997. Speeds are in knots (legend at
right). Areas of black indicate gates where a consensus wind was not calculated.
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(legend at right). Areas of black indicate gates where a consensus wind was not calculated.
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3.2 Post-Analysis Mode

In post-analysis mode, the data are quality controlled after they are collected and archived. This means

that WW and the median filter can evaluate continuity with wind estimates collected after the wind estimate

being checked.

Table 3.2 summarizes the statistics for the quality control of the False Cape profiler data on each of the

case days. The fast two rows give a summary of the consensus data before the QC. The first row shows the
number of consensus wind estimates and the second row shows the number of times the profiler was unable

to produce a consensus wind estimate, or missing data. The next four rows show the number of wind
estimates flagged (i.e., selected as suspect) by each routine when used in the CPM and CPW combinations.
The fifth row shows the number of common wind estimates flagged by CPM and CPW. These are the wind

estimates that were flagged as suspect by both WW and the median filter. Finally, the last two rows show
the number of consensus wind estimates left after the QC combination runs.

The consensus time and precipitation contamination routines flag the same number of points in both

combinations. This is because they are independent checks: they do not depend on time and space

continuity of the data but only on the value of a wind estimate's consensus time period or vertical beam

radial velocity and SNR. The consensus time routine flagged no wind estimates on any of the days in False

Cape profiler data. The rain contamination algorithm performed very well flagging very few wind estimates

on days with no rain (2 May, 15 May, 18 May) and flagging a large number of wind estimates on days when
rain was observed (12 May and 17 June). An examination of the data values (not shown) reveals skillful

performance of this algorithm to flag the rain contaminated wind estimates.

Table 3.2 Post-analysis QC summary for the False Cape Profiler. The total possible number

of consensus winds for a 24-hour period is 3072.

Point Summary 2May 12May 15May 18May 17June

Data Prior to QC:

Consensus Wind Estimates

Missing Data

1438

1634

2356

716

1928

1144

2255

817

2509

563

Number of Consensus Winds Flagged by Each Routine:

Consensus Time

PrecipitationContamination

0

Estimates Flagged by CPM and CPW

0

1271

MedianFilter(CPM) 37 17 22

Weber-Wuertz(CPW) 35 157 16

14 14 8

Number of"Good'ConsensusWindsAfterQC:

1400Number of"Good" Estimates - CPM

Number of"Good" Estimates - CPW 1402

1068

928

1903

1909

26

4

2245

2225

326

49

55

44

2134

2128
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Themedian filter and WW performed similarly in number of wind estimates flagged on most days.

Note, however, the large difference on 12 May in which WW flagged 140 more wind estimates than the

median filter. The bulk of this difference can be explained in the way both algorithms treat areas of

isolated data. In the case of the median filter, if there are not enough wind estimates to determine a

median value, the wind estimate is not flagged. However, if a pattern contains less than 32 wind

estimates, WW will flag all wind estimates in that pattern. This can occur in areas where there are small

groups of wind estimates surrounded by many missing (or previously flagged) winds. The WW algorithm

can not connect these isolated groups with other patterns in the data. After the precipitation

contamination algorithm was run in the 12 May data, such small pockets of isolated data existed.

This is best illustrated by comparing Figures 3.11 and 3.12 (see Figure 3.3 for the raw wind speed
data). In Figure 3.11 there are some data left by CPM between 0600 and 0800 UTC at 2000 ft. CPW

identified these isolated consensus winds as patterns with less than 32 wind estimates and flagged them as

suspect. There are other areas of data seen as vertical lines at 1200, 1645, 2015, and 2130 LrI'C in Figure
3.11 that are not seen in Figure 3.12 for this reason.
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Wind speeds from the False Cape profiler on 12 May 1997 after CPM. Speeds are in knots

(legend at right). Areas of black indicate gates where a consensus wind was not calculated

and where the data were flagged by the algorithms.
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Another important item to note from Table 3.2 is the number of wind estimates commonly flagged by
CPM and CPW. In an ideal situation, erroneous radial velocities would create an erroneous horizontal

wind to the extent that the wind estimate in question would be flagged by both algorithms. The

commonly flagged wind estimates in Table 3.2 likely represent such data, but the other flagged wind

estimates present a dilemma. The critical question to be answered is why would a wind estimate be

considered suspect by one algorithm and not the other. The answer lies in the differences in the

algorithms and data types used in the routines (refer to Section 2). In summary, the median filter

compares the median of the u- and v-components of the winds using the surrounding points in a grid box

with the u- and v-components of the center point. WW uses a pattern recognition technique which
evaluates each of the three radial beam velocities to determine if a wind estimate is erroneous.

A thorough quantitative analysis was not done to determine exactly why a particular wind was

flagged by one algorithm and not the other. But some of the reasons can be deduced based on the

algorithms' procedures. It is important to note that if two adjacent radial velocity estimates do not meet

the continuity requirements to be in the same pattern in WW, they may still be part of different acceptable

patterns and not be flagged. However, a large difference between adjacent radial velocities could create a

large difference between adjacent horizontal wind estimates. The median filter would, therefore, flag one

of those wind estimates provided the median of the 3X3 grid box is largely influenced by points that are
part of one of the WW patterns. Conversely, WW can flag data not flagged by the median filter when

there are isolated small patterns of data, as discussed above.

WW flags wind estimates based on discontinuities in the vertical radial velocity, which the median

filter does not consider. This can also cause wind estimates to be flagged by WW but not the median

filter. Figures 3.11 and 3.12 show an example of this. There are wind speed estimates at 6000 ft to 7000

ft between 1300 and 1500 UTC that change rather quickly over time. These were flagged by WW but not

the median filter. The data show that there were changes in the vertical velocity at these times and

heights that were significant enough to be flagged by WW. However, the resulting horizontal wind

change was not great enough to be flagged by the median filter.
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Theseareverylikelyjustafewofthereasonswhycertainwind estimates are not commonly flagged by

both algorithms. There may be other reasons, but a quantitative analysis of a very large data set from all the

profilers would need to be done to determine the range of possible causes.

3.3 Real-time Mode

In order to test the routines in real-time mode, they were modified to use only previously collected data

in their continuity checks. Archived data were then input to the routines for the simulated real-time QC
tests. The differences between the real-time CPW and CPM are presented in this section.

Table 3.3 summarizes the statistics for the quality control of the False Cape profiler data on each of the

case days. As with Table 3.2, the first two rows give a summary of the consensus data before the QC, the
next four rows show the number of wind estimates flagged by each routine, the fifth row shows the number

of common wind estimates flagged by CPM and CPW, and the last two rows show the number of "good"

consensus wind estimates left after the QC combination runs. The consensus time and precipitation

contamination routines flag the same wind estimates in both combinations and in both modes (see Table

3.2). Because they are independent checks they will flag the same winds in the same data set whether in

real-time or post-analysis mode.

Table 3.3 Real-time analysis QC summary for the False Cape Profiler. The total possible

number of consensed winds for a 24-hour period is 3072.

Point Summary 2 May 12 May I5 May 18 May 17 June

Data Prior to QC:

# of Consensed Points 1438 2356 1928 2255 2509

# of Non-consensed Points 1634 716 I 1144 817 563

Number of Consensus Winds Flagged by Each Routine:

Consensus Time 0 0 0 0 0

Precipitation Contamination 1 1271 3 4 326

Median Filter (CPM) 54 21 26 5 61

Weber-Wuertz (CPW) 32 139 19 8 110

# Common Points CPM/CPW 8 11 6 3 30

Number of"Good" Consensus Winds After QC:

Number of"Good" Estimates - CPM 1383 1064 1899 2246 2122

1405 946 1906 2243 2073Number of"Good" Estimates - CPW

A comparison between Tables 3.2 and 3.3 reveals many similarities in the number of wind estimates

flagged by CPW and CPM, as well as in the number commonly flagged by both combinations. The cause
of the large difference in the number of wind estimates flagged between CPW and CPM on 12 May is the
same as that described in Section 3.2, as is the disparity in the number of commonly flagged winds. A new

large difference of 49 wind estimates between CPW and CPM appeared on 17 June. Figures 3.13 and 3.14
show the wind speeds after CPM and CPW, respectively. For comparison, the raw wind speeds for 17 June

can be found in Figure 3.9. The large difference in the number of wind estimates flagged can be found

mainly in the two profiles at 1815 and 2000 UTC.
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CPWflaggedthetwocompleteprofilesat 1815and2000UTC. Bothof theseprofiles came
immediately after a group of missing profiles that had been flagged by the precipitation contamination

routine. Most of the winds were flagged because they did not fit the patterns that existed before the

missing wind profiles. CPM did not flag any wind estimates in the 1815 UTC profile, and flagged 11

wind estimates in the 2000 UTC profile between 4000 - 5500 ft, 7500 - 8500 ft, and the top-most wind

estimate (see white arrows in Figure 3.13). At 1815 UTC the missing data affected CPM such that it

would only have the data above and below a wind estimate in the same profile to calculate the median (see

Figure 2.3). The winds in this profile were spatially consistent at all levels and none were flagged. This

was not the case for the profile at 2000 UTC. Substantially stronger values from the 1915 UTC profile

were used in the calculation of the medians for the 2000 UTC wind estimates causing several of the wind

estimates at this time to be flagged. CPW flagged two complete profiles (64 wind estimates) in which

CPM only flagged 11 wind estimates. This accounts for most of the difference in the number of wind

estimates flagged between the two combinations on 17 June.

Note that CPW did not flag the 6 wind estimates at 2030 UTC between 6500 - 8500 ft (see white

arrow in Figure 3.14). These data are obviously erroneous and should have been flagged. The entire

profile at 2030 UTC was affected by rain and all other wind estimates in the profile were flagged by the

precipitation contamination algorithm. The data in question were not flagged by the precipitation
contamination algorithm because less than 60% of the individual beam estimates were used in the

calculation of the consensus vertical velocity (see Section 2.1.2). WW will also not flag a wind estimate
based on an inconsistent vertical velocity if less than 60% of the estimates were used in its calculation.

The oblique beam consensus velocities fit into previous patterns in WW and, therefore, the wind estimates

were not flagged by this algorithm. The horizontal wind estimates, however, are highly inconsistent with
the estimates in the previous profiles. Therefore, CPM successfully flagged these erroneous estimates

because the difference between their u- and v-components and the median u- and v-components exceeded
the threshold value in the median filter routine.
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Wind speeds fi'om the False Cape profiler on 17 June 1997 after real-time CPM. Speeds are

in knots (legend at right). Areas of black indicate gates where a consensus wind was not

calculated and where the data were flagged by the algorithms.

29



9000-

8000-

7000.

6000-

Height

(feet) 5000-

40o0-

3000-

2000-

90

8O

7O

6O

5O

4O

3O

2O

10

0

Figure 3.14

0

012345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2-29 23 24

Time 0dTC) I815 Profile

Wind speeds from the False Cape profiler on 17 June 1997 after real-time CPW. Speeds

are in knots (legend at right). Areas of black indicate gates where a consensus wind was

not calculated and where the data were flagged by the algorithms.

3.4 Mode Comparison

The differences in the way CPW and CPM input data in real-time and post-analysis mode have

caused some differences in which wind estimates are flagged. One difference is that there are fewer wind

estimates used in real-time mode to calculate the medians in the median filter or determine patterns in

WW. In the median filter, up to approximately 40% less wind estimates are available to use in the

calculation of the medians in real-time mode than in post-analysis mode. The post-analysis WW inputs

24 hours of data before calculating patterns whereas the real-time WW inputs 6 hours of data. Another

difference is that neither real-time routine can use wind estimates collected after the estimate being

evaluated to check for continuity. Thus, no future trend information is available to influence the

determination of patterns in WW or the value of the medians in the median filter.

A comparison of four of the five case days shows very few differences in performance between the two

combinations in the real-time and post-analysis modes. However, there is a notable difference in

performance between the real-time and post-analysis WW on 17 June. Figure 3.15 shows the 17 June

wind speed results from the post-analysis WW (the raw data and real-time WW output are found in

Figures 3.9 and 3.14, respectively). The good profiles at 1815 and 2000 UTC that were flagged in the

real-time mode were not flagged in the post-analysis mode, and the bad wind estimates between 6500 ft -

8500 ft at 2030 Lrrc that were not flagged in the real-time mode were flagged in the post-analysis mode.

These differences are a result of the fact that future trend information was available to WW in the post-

analysis mode and it was, therefore, able to correctly determine which wind estimates were erroneous and
which were not.
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Figure 3.15 Wind speeds from the False Cape profiler on 17 June 1997 after post-analysis CPW.

Speeds are in knots (legend at right). Areas of black indicate gates where a consensus wind

was not calculated and where the data were flagged by the algorithms.

It is important to note that even though the differences in algorithm performance between the two

modes for the other four days were small, there was usually a noticeable degradation in the output from

CPW. The differences between the modes from CPM were very small and not noticeably worse for the

real-time mode. A possible reason for this is that the median filter uses fewer wind estimates than WW to

evaluate continuity in the post-analysis mode. The reduction in the number of wind estimates in the real-

time mode might then be relatively small compared to that of WW and may have only a small effect on

the median values. This would result in very few differences between the output of the real-time versus

the post-analysis mode in CPM.

More wind speed and direction images to facilitate a comparison between the real-time and post-

analysis modes are contained in the Appendix.
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4 Summary and Conclusions

There is currently no quality assessment of the data from the 915 MHz DRW'P network at CCAS/KSC.

Because of the existence of many possible contaminants of these data, quality assessment routines are

needed. In this study, the AMU has successfully developed and/or configured routines that are able to

identify most of the unreliable data and little of the good data as suspect.

Several routines were tested both individually and in combination with other routines. Two

independent routines that check the value of certain data types and two dependent checks that check the

space and time continuity of the wind data were analyzed. The independent checks include

• A consensus time algorithm that checks the number of minutes in a profile's

consensus period (Section 2.1.1) and

• A precipitation contamination algorithm that determines whether a wind estimate is
erroneous due to the presence of rain (Section 2.1.2).

The dependent checks include

• The Weber-Wuertz algorithm, a well known and widely used pattern recognition

program (Section 2.1.4) and

• A median filter that compares the value of the u-and v-components of a wind estimate

to the median value of the components of the surrounding wind estimates (Section

2.1.3).

It is important to understand that the median filter used in this study is not related in any form to the MFFG

algorithm used on NASA's 50 MHz DRWP (see Section 2.1.3 for a brief description). Therefore, a
comparison between the performances of the MFFG and WW algorithms cannot be made based on the

results of the median filter and WW algorithm comparisons contained within this report.

Perhaps the most important result of this study is that no single routine performed satisfactorily on its

own. The independent routines each check for one specific type of contaminant and cannot flag erroneous

wind estimates caused by other contaminants. The dependent routines can flag an erroneous wind caused

by any contaminant as long as it is inconsistent with the surrounding winds. However, an erroneous wind

estimate caused by a long-lasting contaminant, such as rain, may be seen as consistent with the other

surrounding winds and not flagged. The best results are obtained when the two independent routines are
run first followed by one of the dependent routines. This ensures that the obviously bad wind estimates are

flagged first so that WW will not see them as areas of legitimate patterns and the median filter will not use
the bad wind values in the calculation of the median values.

4.1 Advantages and Disadvantages of Each Routine

Although the routines perform well when used in the CPM and CPW combinations, each routine has

certain disadvantages that can adversely affect the quality assessment results.

The advantage of the consensus time period check is that it is effective at flagging erroneous profiles

caused by too few samples from which to estimate correct winds. This algorithm has one disadvantage.
Profiles calculated from shortened consensus time periods usually appear inconsistent with previous and

subsequent profiles. However, there may be times when the profile will be consistent with the other profiles
and will be correct. It is possible that the correct winds will be measured at some, if not all, of the gates in a

profile with only one or two samples. Even though these winds would be consistent and correct, they would
be flagged. Since this algorithm is rarely invoked, good wind estimates will rarely be flagged.

As rain occurs quite frequently over the CCAS/KSC area, the precipitation contamination algorithm is

necessary and has proven to be very effective at flagging individual erroneous wind estimates contaminated

by rain. This algorithm will not check the vertical beam radial velocity and SNR if less than 60% of the
individual beam estimates are used in the calculation of the values. This is because these vertical velocities

will have no effect on the horizontal wind estimate as they will not be used in the horizontal wind

32



calculation(Equations1.1- 1.2,Section1.3). Thiscanbebothanadvantageanddisadvantage.The
advantageisthatmanytimestheseverticalvelocitiesandSNRsmaybeconsistentwiththosefoundinrain,
butwillactuallybeerroneousandinconsistentwithsurroundingvalues.Thehorizontalwindestimateswill
beunaffectedbytheseverticalvelocitiesandwill notbe flagged.Thedisadvantageoccursin rain-

contaminated profiles when accurate vertical velocities and SNRs are calculated from less than 60% of the
individual beam estimates. This occurred in the 17 June data as can be seen in Figure 3.10. The six bad

wind estimates at 2030 UTC between 6500 - 8500 ft would have been flagged by this algorithm if the
minimum individual beam limit had not been considered. Instead, the bad wind estimates were assumed to

be good.

The median filter and WW both check the temporal and spatial consistency of the wind estimates. If a

wind estimate does not meet the consistency requirements of either algorithm, it is flagged as suspect.

These algorithms rely on the assumption that the ratio of bad data to good is small. These algorithms are at
a disadvantage when there is a large amount of bad data present. Erroneous wind estimates can influence

the consistency checks to the point that good wind estimates are flagged as bad and bad wind estimates are

not flagged. It is for this reason that the independent checks are run ftrst to remove any large blocks of

obviously bad data. Nonetheless, a large amount of erroneous wind estimates caused by contaminants other
than rain or a short consensus time period may exist in the data set which could degrade the performance of
the median filter or WW.

The median filter has another disadvantage not found in WW. If there are not enough wind estimates

to calculate component median values to compare with the wind observation being checked, then the wind

observation is not flagged. A wind observation surrounded by mostly missing or flagged wind estimates
may very well be erroneous but, because of the aforementioned limitation, will not be flagged.

4.2 Recommendations for Operational Use

The two routine combinations designated as CPM and CPW in this report (Section 2.2) are compared

in post-analysis and real-time modes in Section 3 and in the Appendix. Both routines perform similarly in

both modes with some notable differences that have already been discussed. These differences indicate that
CPW is the better routine combination when used in the post-analysis mode, while CPM performs better in

the real-time mode.

Care should be taken when choosing one of the routines over the other, however, as they were closely

scrutinired on only five 24-hour data sets. An important point to consider is that the median filter (Cart et

al. 1995) was newly modified in the AMU and has not been tested on many data sets, while WW was
developed several years ago (Weber and Wuertz, 1991) and has been widely tested and used in the profiler

community. In light of the small data set used in the analysis and the fact that the results from the median
filter were only slightly better than WW in the simulated real-time mode, it is difficult to recommend one
routine over the other. Either routine could be used in real-time. Whichever routine is chosen, it is critical

that the consensus time and precipitation contamination checks be used to flag the obviously bad wind
estimates before using either of the dependent routines. Neither the median filter or WW performed

acceptably when used alone.

Complete descriptions of the routines in CPW and CPM are given in Section 2.1. A summary of the

important parameters of each routine and their currently recommended settings are given in Table 4.1.

33



Table4.1 Briefdescriptionsof andcurrentlyrecommendedparametersettingSfor theroutinesin
CPWandCPM.

Routine Parameters and Settings

Consensus Time Period Check Short consensus time period: <6 minutes

Flags profiles with short consensus time

periods

Precipitation Contamination Check

Flags wind estimates contaminated by rain

using a discriminant function relating vertical
beam radial velocity (VV) and SNR

Weber-Wuertz Algorithm

Pattern recognition program. Uses ratio dy/dx

as acceptable change in wind speed to create

patterns. Flags estimates that do not fit
established patterns and patterns with less than
nimn estimates.

Median Filter (Cart et al. 1995)

L = -1.731 + 0.298(VV) + 0.014(SNR)

For L > 0, wind estimate contaminated by
rain

dx;

dy."

nmin:

time 30 rain

space (along radial) 632 ft

oblique beams 4 kts
vertical beam 2 kts

32 estimates

T_v = max (T(u.v)b T2)

Compares the u- and v- component values of a
wind observation to the median of the u- and

v- component values of the surrounding wind
estimates. If the difference between

observation and the median exceeds Tu or Tv,

the observation is flagged as suspect.

'Where:

T(,.v)l = 0.2"1 (u,V)m + (u,v)i f

T2 = a'( Ah2+ Bh + C )
a = 1.3,
h = height (feet)
A = -5.695 X 10 -9

B = 3.66 X 10.4
C = 7.3834

4.3 Future Work

Most accepted quality assessment routines, such as WW, have been developed and tested over long
periods of time using large wind data sets collected from every season in varying weather conditions. The

routines developed and tested in this study have only been used with a limited warm season data set. Cool

season precipitation signatures in the data may be different from those of the warm season. Thus, the
discriminant function likely needs modification. The real-time WW routine does not perform as well as the

post-analysis version. Modifications to the parameters are likely needed to improve its performance. As

more data are analyzed in future tasks, the quality assessment routines will also be analyzed and modified as

necessary to improve their performance.

The next objective to be completed is quality assessment of the R.ASS data. Steps similar to that of

developing wind data routines will be followed. Hardware and software upgrades to the profiler network

through the Range Standardization and Automation (RSA) contract are scheduled for late July and early

August 1998. The subsequent changes to the wind data may require changes to the algorithms developed in

this study. These two issues are discussed in the following two subsections.
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4.3.1 RASS Data Quality Assessment

When in RASS mode, the radar emits a vertically propagating sound wave, then measures the speed of

that wave using the radar vertical beam. An equation that relates the speed of sound to Tv is used to derive

the individual Tv estimates. A 5-minute consensus period is used to estimate the final "Iv profile in the same

manner as a wind profile. The vertical Tv profile ranges from 112 m to 1.4 km with a gate spacing of 97 m.

The Tv distribution over the CCAS/KSC area will be analyzed for its usefulness in forecasting

thunderstorm formation. It is important that the quality of the data be determined before this analysis is

done. The preliminary work to archive and process this data type is completed. The next step is to develop

and test quality assessment routines. The WW algorithm will be modified and tested and a lapse-rate

algorithm will be developed. Analysis of the data may result in the development of other routines, such as

the precipitation contamination check, that can flag erroneous data created by a specific contaminant.

The majority of this work is expected to be completed by May 1998. The product will be a final report

describing how RASS data are acquired and the results of the quality assessment routine evaluation.

4.3.2 RSA Data Processing Upgrade

As stated earlier, hardware and sothvare upgrades to the radars in the network by RSA are scheduled

for late July and early August 1998. One scheduled improvement will modify system soth_are such that
when a radar is reset in the middle of a consensus period, the data collected previous to the reset will not be
deleted and will be used in the consensus calculation. This will allow for the elimination of the consensus

time period check routine. The basic data processing techniques, however, will remain the same as those
described in Section 1.3. Changes may be made to the maximum height of the profile, the number of gates

in the profile, the gate spacing, and the consensus time period. The format of the data transmitted to the
ROCC will also be different. Exact details of all the changes affecting the data have not yet been provided.

But, any changes in these parameters may require changes to the quality assessment routines and the

soft'ware that ingests the data.

RSA personnel have indicated that WW will be used to QC the data before it is available to operational

personnel. It is not known at this time how WW will be implemented, i.e. which data types will be used or
how the parameters will be set. In any case, it is clear from this study that some form of a precipitation
contamination algorithm must be used before WW, otherwise the performance of WW will be degraded

when rain is affecting the data.

4.4 Conclusions

An important conclusion of this study is that more than one quality assessment routine is needed to

accurately flag most of the erroneous data. Routines that check for temporal and spatial continuity work

well when the ratio of bad to good data is small. However, long-lived contaminants can cause a large
amount of erroneous data that will not be properly flagged by these algorithms. Because of the small data

set used in the analysis and the fact that the results from the median filter were only slightly better than WW
in the simulated real-time mode, neither routine is recommended over the other. It is critical, however, that

the consensus time and precipitation contamination checks be used to flag the obviously bad wind estimates

before using either of the dependent routines. Both of the combinations are able to identify most of the

unreliable data and little of the good data as suspect.
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Appendix

This Appendix contains images that allow for a closer comparison of CPW and CPM in post-analysis
and real-time modes. Wind speed data from 12 May and wind direction data from 17 June are shown.

In the 12 May case, the performance of CPW was superior to that of CPM in post-analysis mode.
However, CPW performance was degraded in the real-time mode such that the results were similar to

CPM in both modes. The performance of CPM did not differ significantly between post-analysis and real-

time modes. In the 17 June case, CPW and CPM performed similarly in post-analysis mode. Again, a

degradation occurred in the real-time performance of CPW, but not in CPM.

12 May 1997

Figure A.1 shows the raw wind speed data, Figures A.2 and A.3 show the post-analysis results for

CPW and CPM, respectively, and Figures A.4 and A.5 show the real-time results for CPW and CPM,

respectively. A comparison of Figures A.2 and A.3 shows that CPW is more effective than CPM at

flagging isolated wind estimates that are surrounding by a large amount of flagged or missing data. A

degradation in that ability is seen by comparing Figures A.2 and A.4. The real-time results in Figures A.4

and A.5 are very similar in that isolated areas of wind estimates were not flagged by either CPW or CPM.

90

80

70

60

4(3

20

10

0

Figure A. 1

0 l 2 3 4 5 6 7 8 9 10 11 12 13 I4 15 t6 17 18 19 20 21 _ 23 24

Time CUTC)

Wind speeds from the False Cape profiler on 12 May 1997. Speeds are in knots. Areas of

black indicate gates where a consensus wind was not calculated.
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Wind speeds from the False Cape profiler on 12 May 1997 after post-analysis CPW.
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where the data were flagged by the algorithms.
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17 June 1997

Figure A.6 shows the raw wind direction data, Figures A.7 and A.8 show the post-analysis results for

CPW and CPM, respectively, and Figures A.9 and A.10 show the real-time results for CPW and CPM,

respectively. A comparison of Figures A.7 and A.8 shows very little difference in the results of the two

routine combinations. A degradation can seen in a comparison of Figures A.7 and A.9. The obviously

erroneous winds at 2030 UTC between 6500 - 8500 fl in Figure A.9 were not flagged by the real-time

CPW, but were flagged by the post-analysis CPW. The reason for this is explained in Section 3.3. The

real-time CPM flagged more wind estimates between 2000 and 2015 UTC as seen in Figure A.10, but the

results were otherwise very similar to the post-analysis CPM results in Figure A.8.
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